46 # ALPINE LANDSCAPE CONSULTANTS FRICTION LOSS CALCULATION | Date | | |------------|-------------------| | Project | a iso innuna – gR | | Def Teller | | | | | CALCULATION | lef. Tables | Tall addison to | | |--|---|--|-------------------|------------------|-----------------| | , | Vari 1 | Static PSI | | | | | | | | | | | | Tap Size
Meter Elev | | | Head
Nozzle | | | | | | | | 7 | | | # | SIZE | COMPONENT | GPM | DISTANCE | PSI LOSS | | 1 | N | poly lateral | | | | | 2 | | | | KO DEL-KOTT LESS | SHEET HOME | | 3 | | | | | | | 5 | ON LO DO | | 7 7 7 7 7 | | -pr | | 6 | | e | | 111 050 ACC 1030 | To get a second | | 7 | | L(H to (P), to trace = 15, 15 | Section 1 | - Mrshadiy | 16 pt | | 8 | | (Maid Hundon Land | | en te etrocal | Bary water | | 9 | | | | | | | 10 | | | | | | | 12 | | | | | | | 13 | | | | | | | 14 | | | | | and the second | | 15 | | T - (8)T1 | | 39.09 | errer terre | | 16 | | | | | | | 17 | | | | | | | 18
19 | | Markey and Comment of the Real Comment | | | | | 20 | | | 102 | | = W | | 21 | | TOTAL DISTANCE (line#1thru#2 | 0.) | | | | _ | 200000000000000000000000000000000000000 | | 9 | | | | | | | | PSI/100ftl | | | 22 | | [L _C =(line #21)+100=] | [F _f = | | | | 22 | | [L _C =(line #21)+100=] TOTAL LATERAL LOSS (line#1thru#2 | [F _f = | | | | 23 | | [L _C =(line #21)+100=] TOTAL LATERAL LOSS (line#1thru#2 control valve | [F _f = | | | | 23
24
25 | | [L _c =(line #21):100=] TOTAL LATERAL LOSS (line#lthru#2 control valve minimum head pressure elev.± (ft x.43 | [F _f = | | | | 23 | | [L _c =(line #21)+100=] TOTAL LATERAL LOSS (line#lthru#2 control valve minimum head pressure | [F _f = | | | | 23
24
25
26 | | [L _c =(line #21):100=] TOTAL LATERAL LOSS (line#lthru#2 control valve minimum head pressure elev.± (ft x.43 | [F _f = | | | | 23
24
25
26 | | [L _C =(line #21):100=] TOTAL LATERAL LOSS (line#1thru#2 control valve minimum head pressure elev.± (ft x.43) TOTAL VALVE LOSS=Vp (#22thru#2) | [F _f = | | | | 23
24
25
26 | | [L _c =(line #21):100=] TOTAL LATERAL LOSS (line#1thru#2 control valve minimum head pressure elev.± (ft x.43 TOTAL VALVE LOSS=Vp (#22thru#2 | [F _f = | | | | 23
24
25
26
27
28
29
30 | | [L _C =(line #21):100=] TOTAL LATERAL LOSS (line#1thru#2 control valve minimum head pressure elev.± (ft x.43) TOTAL VALVE LOSS=Vp (#22thru#2) | [F _f = | | | | 23
24
25
26
27
28
29
30
31 | | [L _C =(line #21)+100=] TOTAL LATERAL LOSS (line#1thru#2 | [F _f = | | | | 23
24
25
26
27
28
29
30 | | [L _C =(line #21):100=] TOTAL LATERAL LOSS (line#1thru#2 | [F _f = | | | | 23
24
25
26
27
28
29
30
31 | | [L _C =(line #21)+100=] TOTAL LATERAL LOSS (line#1thru#2 | [F _f = | | | | 23
24
25
26
27
28
29
30
31
32 | | [L _C =(line #21)+100=] TOTAL LATERAL LOSS (line#1thru#2 | [F _f = | | | | 23
24
25
26
27
28
29
30
31
32 | | $[L_{\text{C}}=(\text{line }\#21) \div 100 = __]$ $TOTAL \ LATERAL \ LOSS \ (\text{line}\#1 \text{thru}\#2$ $ $ | [F _f = | | | | 23
24
25
26
27
28
29
30
31
32 | | [L _c =(line #21):100=] TOTAL LATERAL LOSS (line#1thru#2 | [F _f = | | | | 23
24
25
26
27
28
29
30
31
32
33
34 | | [L _C =(line #21)+100=] TOTAL LATERAL LOSS (line#1thru#2 | [F _f = | | | | 23
24
25
26
27
28
29
30
31
32
33
34 | | [L _C =(line #21)+100=] TOTAL LATERAL LOSS (line#1thru#2 | [F _f = | | | | 23
24
25
26
27
28
29
30
31
32
33
34 | | [L _C =(line #21)+100=] TOTAL LATERAL LOSS (line#1thru#2 | [F _f = | | ** | | 23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39 | | [L_c=(line #21):100=] TOTAL LATERAL LOSS (line#1thru#2 | [F _f = | | | | 23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 | | [L _c =(line #21):100=] TOTAL LATERAL LOSS (line#1thru#2 | [F _f = | | ** | | 23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 | | [L_c=(line #21):100=] TOTAL LATERAL LOSS (line#1thru#2 | [F _f = | | ** | | 23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 | | [L_c=(line #21):100=] TOTAL LATERAL LOSS (line#1thru#2 | [F _f = | | ** | #### LATERAL LINE FRICTION-FACTOR $$F_{f} = \frac{P_{o} \times P_{v}}{L_{c}}$$ $\mathbf{F_f}$ - amount of allowable PSI loss per 100 ft. of pipe, regardless of pipe size. Po - operating pressure of sprinkler head (PSI). P_v - allowable PSI variation (max. is 20% = insert .20 for P_v). L_c - length of pipe to furthest head (in hundreds of feet). # MAIN LINE FRICTION-FACTOR $$F_{m} = \frac{V_{p} \times P_{v}}{L_{m}}$$ F_{m} - amount of allowable PSI loss per 100 ft. of pipe, regardless of pipe size. V_n - min. PSI required at inlet of most distant zone control valve. P_v - allowable PSI variation (10%-20% = insert .10-.20 for P_v). L_{m} - length of main line to furthest valve (in hundreds of feet). ### SURGE PRESSURE $$P_{t} = P_{s} + \left[\frac{V \times L_{m} \times (7.0)}{t} \right]$$ Pt - total PSI during surge (should not exceed burst pressure rating of plastic pipe; which for PVC pipe is 2.5-2.8 times the operating pressure rating). $P_{\rm S}$ - operating pressure of the sprinkler system. V - velocity of flow of water in the system (ft/sec). $L_{\rm m}$ - length of main line to zone control valve (in hundreds of feet). - valve closing time (seconds). $$\frac{\text{SPRAY PRECIP. RATE}}{(\text{in/hr})} \quad P_{r} = \frac{(96.3) \times \text{gpm}}{\text{S} \times \text{S}}$$ $$\frac{\text{SPRAY PRECIP. RATE}}{(\text{in/hr})} \quad P_{r} = \frac{(96.3) \text{ x gpm}}{\text{S x S}} \qquad \frac{\text{DRIP PRECIP. RATE}}{(\text{in/hr})} \quad P_{r} = \frac{(1.6) \text{ x gph}}{\text{S x S}}$$ gpm - gal/min applied to area by full-circle sprinkler. gph - gal/hr rating of emitter. S - spacing between rows in ft. (2nd "S" = [(.866) x S] for triangular spacing). ## SPRINKLER ZONE OPERATING TIME $$T = \underbrace{I \times (60)}_{P_r \times D}$$ T - operating time (min/day). I - irrigation requirement of plantings (inches/week). P_r - precipation rate of sprinkler zone (inches/hour). D - days available to irrigate (days/week).